基于双时相特征筛选的遥感图像变化检测模型
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.12082/dqxxkx.2023.230377

基于双时相特征筛选的遥感图像变化检测模型

引用
利用遥感图像变化检测对建筑物进行实时监测是国土资源环境部门调查管理工作开展的关键技术手段.本文针对遥感图像变化检测任务中未充分利用双时相图像间的依赖关系和空间细节信息丢失导致检测精度下降的问题,提出了一种基于双时相特征筛选的轻量级遥感图像变化检测模型.在编码部分,利用精简MobileNetV3分别提取双时相遥感图像不同层级的特征,将同级特征输入特征筛选模块后通过注意力机制和阈值筛选的方式建立双时相图像间的关系,生成更具判别性的特征.在解码部分,为解决普通上采样导致边界像素被分配错误的问题引入了位置指导上采样模块,通过与特征筛选模块协同工作利用双时相图像间的关系指导上采样过程.针对下采样操作导致空间细节信息丢失的问题,采用多尺度特征融合模块来聚合多级特征生成更具空间细节信息的变化图.通过在CDD和DSIFN变化检测数据集上的综合实验表明,本文所提模型在F1分数上分别达到89.42%和79.43%,模型计算量和参数量分别为5.72GFLOPs和1.89 MB,预测时间达到0.02 s,相较于其他模型在精度和实时性上均具有显著优势,更适合在移动端部署,且本文模型检测的可视化结果更为完整,对于变化边界的检测也更加平滑.

变化检测、遥感图像、特征筛选、位置指导上采样、多尺度融合、深度学习、注意力机制、空间细节信息

25

TP391;TP751;TN911.73

2023-11-27(万方平台首次上网日期,不代表论文的发表时间)

共13页

2268-2280

相关文献
评论
暂无封面信息
查看本期封面目录

地球信息科学学报

1560-8999

11-5809/P

25

2023,25(11)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn