基于粒子滤波的行车轨迹路网匹配方法
行车轨迹是一种时间序列的地理空间位置采样数据,而传统的轨迹—路网匹配方法主要以全局或局部寻优的方式建立轨迹—路网匹配关系,影响了时空场景中数据的匹配计算过程的相对独立性.针对这个问题,本文基于粒子滤波(Particle Filter,PF)原理建立行车轨迹与道路网络之间的匹配关系.首先,沿轨迹中车辆运动方向在道路网络中搜索邻近道路节点,在与道路节点拓扑邻接的道路弧段上初始化随机生成粒子,根据轨迹中车辆运动模型将粒子沿所在道路弧段移动;然后,基于PF原理计算各时刻粒子运动状态及与行车轨迹采样点之间的距离误差,根据高斯概率密度函数计算粒子权重并利用随机重采样方法进行粒子重采样,迭代更新粒子运动状态;最后,计算与搜索到的道路节点拓扑邻接的每条道路弧段中累计粒子权重,通过各道路弧段累计权重计算轨迹—路网匹配关系.以行车轨迹进行实验表明,利用本文方法可以通过粒子时空变化反映采样点的移动,行车轨迹—路网匹配结果的正确率大于85%,能够实现行车轨迹和路网的准确匹配.
行车轨迹、时间序列、粒子滤波、道路网络、地图匹配、随机粒子、邻接道路弧段、运动模型
22
国家自然科学基金重点项目41631175
2020-12-10(万方平台首次上网日期,不代表论文的发表时间)
共9页
2109-2117