一种面向海量浮动车数据的地图匹配方法
浮动车数据已广泛应用于交通监管、智能出行、城市规划等领域,地图匹配是浮动车数据关键技术之一,保障匹配算法精度的同时提高匹配效率,是面向海量浮动车数据地图匹配方法的难点.本文提出一种基于HMM(Hidden Markov Model)的地图匹配模型,相对传统模型尝试了多个方面的改进:在发射概率计算中引入航向角变量,并探讨了该变量对模型精度的影响;以格网对路网进行划分,构建哈希索引,实现候选路段快速查找;采用路径无权距离替代路径实际距离,并对路网进行预处理,根据浮动车有限时间内的活动范围构建路段转移矩阵,实现路段转移概率快速计算,以减小路径匹配算法时间复杂度.将模型应用于北京出租车轨迹数据匹配结果表明,对于采样时间间隔在1~120 s的浮动车数据模型切实可行.在满足匹配精度应用需求的前提下,模型效率有了较大幅度提升,能有效应用于海量浮动车数据地图匹配.
浮动车、地图匹配、隐马尔可夫模型、网格、路段转移矩阵
17
国家科技支撑计划项目2015BAJ02B00;国家科技部政策引导类项目2011FU125Z24.
2016-03-18(万方平台首次上网日期,不代表论文的发表时间)
1143-1151