基于深度学习的空间尘埃碰撞实时自动检测
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.6038/cjg2022Q0331

基于深度学习的空间尘埃碰撞实时自动检测

引用
准确快速地检测航天器上发生的尘埃碰撞事件能帮助我们更好地了解空间环境的尘埃分布以及减少航天器因尘埃碰撞受到的破坏.现有人工识别或基于尘埃碰撞引起的电势差信号波形特征的机器识别尘埃碰撞事件的方法虽然有较高精度,但效率低下,迫切需要高精度且自动化方法识别航天器收集的海量电势差信号.深度学习模型在信号分类和识别具有较强能力,本文把空间尘埃碰撞引起的电势差信号检测问题建模成信号分类问题,构建了一个卷积神经网络模型,该模型可以自动提取信号特征并根据特征对信号分类,同时为了训练模型和测试模型预测准确率,构建了一个由尘埃碰撞引起的电势差信号和非尘埃碰撞引起的电势差信号组成的数据集,模型在训练集上准确率为 99.46%,在测试集上准确率达到 98.68%,查全率为 99.44%,查准率为 97.95%,threat score为97.41%.实现了高精度且自动化的尘埃碰撞事件检测.

深度学习、卷积神经网络、空间尘埃碰撞、实时自动化检测

66

P352(空间物理)

国家自然科学基金;深圳市科创委稳定支持面上项目

2023-02-20(万方平台首次上网日期,不代表论文的发表时间)

共9页

485-493

相关文献
评论
暂无封面信息
查看本期封面目录

地球物理学报

0001-5733

11-2074/P

66

2023,66(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn