基于一维卷积神经网络的高分辨率Radon变换反演方法研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.6038/cjg2022P0350

基于一维卷积神经网络的高分辨率Radon变换反演方法研究

引用
高分辨率Radon变换是地震资料处理常用的方法之一,其反演通常涉及矩阵求逆、多次迭代等环节,这些因素导致Radon变换反演计算量大,收敛速度慢等问题.本文在分析Radon变换分辨率降低原因基础上,提出基于一维卷积神经网络(Convolutional Neural Network,CNN)的高分辨率Radon变换反演方法.该方法通过卷积神经网络的非线性表征能力实现低分辨率Radon参数到高分辨率Radon参数的映射,分析了基于反褶积原理的串联映射模型和基于残差学习的并联映射模型提高分辨率的原理.将上述CNN网络得到的特定频率Radon参数约束其他频率参数的反演,避免了分频训练的弊端.模拟数据和实际数据的多次波压制实验表明,本文提出的基于一维卷积神经网络的高分辨率Radon变换可以较好地压制多次波,且计算效率高.

Radon变换、卷积神经网络、反演方法、频率约束、多次波压制

65

P631

国家科技重大专项;中国石油科技创新基金项目

2022-09-15(万方平台首次上网日期,不代表论文的发表时间)

共13页

3610-3622

相关文献
评论
暂无封面信息
查看本期封面目录

地球物理学报

0001-5733

11-2074/P

65

2022,65(9)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn