地震预警现地PGV连续预测的最小二乘支持向量机模型
为提升现地仪器地震烈度预测的准确性与连续性,研究面向地震预警的PGV连续预测模型.以中国仪器地震烈度标准的计算参数:0.1~10 Hz带通滤波三分向矢量合成速度峰值PGV为预测目标,利用日本K-net与KiK-net台网P波触发后1?10 s强震数据,基于人工智能中的机器学习方法-最小二乘支持向量机,选取7种特征参数作为输入构建最小二乘支持向量机PGV预测模型LSSVM-PGV.结果表明,本文建立的LSSVM-PGV模型在训练数据集与测试数据集上的预测误差标准差变化趋于一致,具备泛化性能;P波触发后3 s预测PGV与实测PGV即可整体符合1:1关系,随着时间窗的增长,PGV预测的误差标准差显著减小、并在P波触发后6s趋向收敛,具备准确连续预测能力;对比同为P波触发后3 s的常用Pd-PGV模型,LSSVM-PGV模型的PGV预测误差标准差明显减小,"小值高估"与"大值低估"现象明显改善,预测准确性得到提升.熊本地震序列的震例分析表明,对于6.5级以下地震,LSSVM-PGV模型最多在P波触发后3 s即可预测出与实测PGV整体符合1∶1关系的PGV;对于7.3级主震,由于其破裂过程的复杂性,P波触发后3 s的预测结果出现一定程度的低估,但随着时间窗增长至6s时,预测PGV与实测PGV符合1∶1关系、并直到10 s整体趋势保持一致.本文构建的LSSVM-PGV模型可用于现地地震预警仪器地震烈度的预测.
最小二乘支持向量机、现地、地震预警、速度峰值PGV、熊本地震序列
64
P315(大地(岩石界)物理学(固体地球物理学))
国家重点研发计划2018YFC1504003
2021-03-09(万方平台首次上网日期,不代表论文的发表时间)
共14页
555-568