基于广义回归神经网络的行星际/太阳风参数和地磁指数的紫外极光强度建模
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.6038/cjg2020N0151

基于广义回归神经网络的行星际/太阳风参数和地磁指数的紫外极光强度建模

引用
极光卵极光强度的空间分布是太阳风-磁层-电离层能量耦合过程的重要表现,并且随着空间环境参数和地磁指数的变化而变化,是空间天气的重要指示器.建立合适的极光强度模型对亚暴的预测以及磁层动力学的研究具有重要意义.本文基于Polar卫星的紫外极光成像仪(Ultraviolet Imager,UVI)数据,采用两种不同的极光强度表征方法,即曲线拟合方法(从UVI图像数据中提取极光强度沿磁余纬方向上的曲线特征,Curve Feature along the Magnetic Co-latitude Direction of the Auroral Intensity,CFMCD_AI)和网格化方法(从UVI图像数据中提取极光强度的网格化特征,Gridding Feature of the Auroral Intensity,GF_AI),来构造极区极光强度特征数据库.然后,利用该数据库,采用广义回归神经网络(Generalized Regression Neural Network,GRNN)构建了以行星际/太阳风参数(行星际磁场三分量、太阳风速度和密度)和地磁指数(AE指数)为输入参数的两种极光强度预测模型(GRNN_CFMCD_AI模型和GRNN_GF_ AI模型).利用图像质量评价指数结构相似度(structure similarity,SSIM)作为极光强度模型预测结果和对应的UVI图像的相似性评价标准(完全相似为1,不相似为0,一般认为SSIM大于0.5是具有较好的相似性),对两种极光强度模型进行了性能评价.结果显示,GRNN_GF_AI模型预测结果对应的SSIM值范围为0.36~0.77,均值为0.54,性能优于GRNN_CFMCD_AI模型的.

极光卵模型、空间天气、神经网络、紫外极光

63

P352(空间物理)

国家重点研发计划;国家自然科学基金;中国科学院空间科学先导专项

2020-05-15(万方平台首次上网日期,不代表论文的发表时间)

共13页

1738-1750

相关文献
评论
暂无封面信息
查看本期封面目录

地球物理学报

0001-5733

11-2074/P

63

2020,63(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn