形变观测数据的多异常形态统一识别
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.6038/cjg20171207

形变观测数据的多异常形态统一识别

引用
地震前兆数据中的形变观测数据变化复杂,地球物理场变化和环境干扰等信息识别与剔除是与地震相关现象分析的关键.传统的信号识别主要采用回归分析、经验模态分解、频域信号分解等方法,但它们难以统一识别高幅值变化(尖峰、阶跃)与高频变化波形.本文利用信息熵参与形变时序数据的自动化分段构造子序列,一定程度上避免了这两种波形被分割的弊端,然后以统计描述方式表达子序列,最后利用角度异常因子(Angle-Based Outlier Factor,ABOF)和局部异常因子(Local Outlier Factor,LOF)构建对数函数定义离群点,以解决统一识别高幅度变化与高频率变化的问题.实验表明,对于特征向量维度变化的情况,LOF-ABOF算法的计算效率呈线性变化关系;在特征表达策略改变的情况下,该算法对高幅值变化和高频变化的异常识别效果良好,本文所提供方法可以检测出高幅值变化与高频率变化的异常形态,为地震前兆数据中形变观测数据“前兆信号”的识别提供指导与参考,为深入认识地震现象及其产生机理奠定基础.

形变观测数据、高幅值变化、高频变化、信息熵、角度异常因子、局部异常因子

60

P315(大地(岩石界)物理学(固体地球物理学))

中国地震局地壳应力研究所中央级公益性科研院所基本科研业务专项项目项目号ZDJ2015-10

2018-01-12(万方平台首次上网日期,不代表论文的发表时间)

共10页

4623-4632

相关文献
评论
暂无封面信息
查看本期封面目录

地球物理学报

0001-5733

11-2074/P

60

2017,60(12)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn