顺序数据同化的Bayes滤波框架
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

顺序数据同化的Bayes滤波框架

引用
数据同化是在动力学模型的运行过程中不断融合新的观测信息的方法论,Bayes理论是数据同化的基石.从原理、方法和符号系统为Bayes滤波在数据同化中的应用勾勒一个统一的框架.首先对连续数据同化和顺序数据同化的各种方法做了分类,然后给出了非线性系统顺序数据同化的Bayes递推滤波形式,并在此基础上介绍了典型的顺序数据同化方法--粒子滤波和集合Kalman滤波.粒子滤波实质上是一种基于递推Bayes估计和Monte Carlo模拟的滤波方法,而集合Kalman滤波相当于一种权值相等的粒子滤波.Bayes滤波理论为顺序数据同化提供了更广义的理论框架,从基础的数学理论上揭示了数据同化的基本原理.

数据同化、Bayes滤波、集合Kalman滤波、粒子滤波

25

TP79;P237(遥感技术)

国家自然科学基金40771036;国家杰出青年科学基金40925004;公益性行业气象科研专项经费GYHY200706005

2010-11-12(万方平台首次上网日期,不代表论文的发表时间)

515-522

相关文献
评论
暂无封面信息
查看本期封面目录

地球科学进展

1001-8166

62-1091/P

25

2010,25(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn