基于重磁数据梯度比值的深度学习技术实现场源位置反演方法
场源中心位置的计算是重磁数据反演的主要任务之一,现主要通过异常与场源位置之间的数学物理方程来估算地质体的位置.为了快速、准确获得地质体的位置信息,提出基于重磁梯度比值的深度学习技术实现场源位置的获取;其利用深度学习技术所建立的重磁梯度比值水平分布与地质体埋深、构造指数的关系,快速实现异常场源位置计算,且提出利用多个值的相互关系来更加准确、稳定地计算出地质体的信息.该方法可以计算复杂地质体的中心位置,且避免了以往线性方程反演方法需对结果进行筛选的复杂过程,对于存在剩磁的磁异常则采用解析信号的深度学习方法来进行位置反演.理论模型试验证明利用梯度比值的深度学习方法可以准确获得地质体的深度,且通过对比更多点的深度学习计算结果发现,采用多个不同比例极值点可以减弱噪声带来的干扰,从而得到更加准确的位置.最后将该方法应用于实测磁异常的反演工作,获得了地下磁性物体的中心位置,且计算结果与欧拉反褶积法相接近,因此该方法具有良好的实用性.
重磁场源;中心位置;比值;深度学习;地球物理
46
P312.9(大地(岩石界)物理学(固体地球物理学))
"十三五"国家重点研发计划项目No.2017YFC0601606
2021-10-18(万方平台首次上网日期,不代表论文的发表时间)
共11页
3365-3375