基于PNN的GIS局部放电模式识别方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.19457/j.1001-2095.dqcd21522

基于PNN的GIS局部放电模式识别方法

引用
气体绝缘开关设备(GIS)因绝缘缺陷引起的局部放电特性具有复杂性和分散性,其特征量的选取易产生数据的丢失和冗余,导致故障类型的识别效果不佳.据此,提出了采用线性判别分析(LDA)方法和遗传算法优化概率神经网络结合的局部放电模式识别方法.通过GIS局部放电实验平台模拟了5类典型的GIS局部放电模型,并建立相应的超高频图谱,提取了相关的特征参量;经过线性判别分析降维得到低维的样本空间,并送入到遗传算法优化后的概率神经网络中进行模式识别;分别采用BP神经网络、SVM、概率神经网络、优化概率神经网络4种分类器进行模式识别,实验结果表明,样本空间经过LDA降维,并经过遗传算法优化概率神经网络进行模式识别,具有较优的识别效果和识别时长.

气体绝缘开关设备;局部放电;模式识别;线性判别分析;遗传算法;概率神经网络

51

TM933

国家自然科学基金;贵州省科技厅自然科学基金重点资助项目;贵州省教育厅自然科学基金

2021-08-13(万方平台首次上网日期,不代表论文的发表时间)

共8页

45-52

相关文献
评论
暂无封面信息
查看本期封面目录

电气传动

1001-2095

12-1067/TP

51

2021,51(15)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn