基于RBF神经网络的铁水硅含量预报模型
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1001-2095.2002.03.008

基于RBF神经网络的铁水硅含量预报模型

引用
文章利用RBF神经网络的全局搜索能力,结合梯度学习算法和专家系统,建立了高炉铁水硅含量预报RBF神经网络模型.该系统解决了BP神经网络局部的收敛,学习时间过长的问题.实际应用表明,该系统可以提高硅含量预报命中率,为高炉操作提供指导.

高炉、硅含量预报、梯度算法、神经网络

32

TP18(自动化基础理论)

湖南省中青年科技基金99JZY2079

2004-01-08(万方平台首次上网日期,不代表论文的发表时间)

共3页

25-27

相关文献
评论
暂无封面信息
查看本期封面目录

电气传动

1001-2095

12-1067/TP

32

2002,32(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn