基于自适应布谷鸟聚类搜索的推荐系统算法的研究
推荐系统本质是一种信息检索技术,能根据用户喜好在海量数据中检索出合适数据推荐给用户,传统推荐系统一般使用协同过滤推荐算法,协同过滤推荐算法主要通过挖掘用户的历史行为数据进行推荐,但传统推荐算法存在着稀疏矩阵、冷启动、实时性等问题困扰[1];因此,本文提出一种基于自适应布谷鸟聚类搜索的改进推荐系统算法,首先对推荐数据进行聚类处理,然后利用布谷鸟算法较强的全局搜索能力,提升推荐系统的准确度,实验结果表明,引入自适应布谷鸟聚类搜索能对传统协同过滤算法在推荐精度、召回率等方面指标方面有一定提高,计算效果优于传统推荐算法.
布谷鸟搜索算法、推荐系统、聚类
18
TP311(计算技术、计算机技术)
2022-04-18(万方平台首次上网日期,不代表论文的发表时间)
共3页
87-88,91