Hopfield神经网络在字符识别中的应用
文章介绍了离散Hopfield神经网络的基本概念及其原理,以Matlab为工具,根据Hopfield神经网络的相关知识,设计了一个具有联想记忆功能的离散型Hopfield神经网络。首先提取照片的像素值,通过对照片的灰度处理,得到灰度像素矩阵。由于对单个字符进行识别的效果比多个字符整体识别的效果好,故对不同的字符进行分割,然后运用OSTU算法求得最佳阈值,通过数据替换得到该字符的二值矩阵。用原图片的二值矩阵作为训练样本,生成Hopfield神经网络。然后分别在不同噪声强度的情况下,以噪声图像的二值矩阵作为测试样本,观察网络的输出效果,并计算出相应的识别率。通过测试发现,噪声强度在较小范围0.1左右时,该网络可达到很好的识别效果,此时识别率接近1;随着噪声强度的增大,识别效果变差;当噪声强度达到0.4时,该网络已无法进行识别。
Hopfield神经网络、二值矩阵、OSTU算法、识别率
TP393(计算技术、计算机技术)
2013-08-23(万方平台首次上网日期,不代表论文的发表时间)
共4页
4925-4928