10.3969/j.issn.2095-2163.2016.03.005
一种有效的均值聚类初始化方法
聚类算法是用来提取有用信息的重要技术,k均值聚类算法是其中应用最为普遍的聚类分析算法.然而,这种聚类算法的主要问题是,最终的聚类结果高度依赖于初始聚类中心.标准的k均值聚类算法使用随机初始中心会得到很差的聚类结果.因此,为了克服标准k-均值聚类算法的不足,本文提出一种基于贡献率的方法来优化初始中心的选择,以便得到一个好的聚类结果.将新提出的初始化方法应用到一些知名的数据集,将其与几种传统的初始化算法相比较,证明新提出的初始化方法具有良好的性能.本文所提出的方法不仅容易理解,而且聚类的迭代次数和执行时间也明显下降.本文的初始化方法可以保证得到一个比较好的聚类结果.
数据挖掘、k均值聚类、初始中心
6
TP391(计算技术、计算机技术)
2016-08-24(万方平台首次上网日期,不代表论文的发表时间)
共4页
17-20