10.3969/j.issn.2095-2163.2016.03.002
网络知识资源表示学习模型
随着电子计算机技术和互联网的快速发展,网络知识资源呈爆炸式增长,人们往往不能有效地获取、利用所需的网络知识资源.为了更好地利用网络知识资源,需要应用自动化、智能化的数据挖掘、信息提取方法.Web文档作为网络知识资源的一种载体,有着自然语言非结构化的特点,所以在运用聚类、分类等挖掘技术进行文本挖掘之前,需要将Web文档转化为机器学习算法可以理解的格式,即将文本数据转换成数值数据.针对现有常用文本表示方法的局限性,本文提出了一种基于命名实体和词向量相结合的网络知识资源表示学习模型.并在算法知识领域内进行实现与应用探索,包括网络解题报告的聚类和对网络解题报告的搜索,实验结果显示本文提出的方法在这些任务上取得了较好的效果.
文本表示、命名实体识别、条件随机场、算法知识、词向量
6
TP391(计算技术、计算机技术)
2016-08-24(万方平台首次上网日期,不代表论文的发表时间)
共6页
5-10