网络知识资源表示学习模型
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.2095-2163.2016.03.002

网络知识资源表示学习模型

引用
随着电子计算机技术和互联网的快速发展,网络知识资源呈爆炸式增长,人们往往不能有效地获取、利用所需的网络知识资源.为了更好地利用网络知识资源,需要应用自动化、智能化的数据挖掘、信息提取方法.Web文档作为网络知识资源的一种载体,有着自然语言非结构化的特点,所以在运用聚类、分类等挖掘技术进行文本挖掘之前,需要将Web文档转化为机器学习算法可以理解的格式,即将文本数据转换成数值数据.针对现有常用文本表示方法的局限性,本文提出了一种基于命名实体和词向量相结合的网络知识资源表示学习模型.并在算法知识领域内进行实现与应用探索,包括网络解题报告的聚类和对网络解题报告的搜索,实验结果显示本文提出的方法在这些任务上取得了较好的效果.

文本表示、命名实体识别、条件随机场、算法知识、词向量

6

TP391(计算技术、计算机技术)

2016-08-24(万方平台首次上网日期,不代表论文的发表时间)

共6页

5-10

相关文献
评论
暂无封面信息
查看本期封面目录

智能计算机与应用

2095-2163

23-1573/TN

6

2016,6(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn