基于BP-改进NSGA-Ⅱ锅炉燃烧多目标优化
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1001-0505.2022.05.015

基于BP-改进NSGA-Ⅱ锅炉燃烧多目标优化

引用
为了提高锅炉热效率和降低污染物排放,对锅炉燃烧过程进行多目标优化.采用BP神经网络与改进非支配排序遗传算法(INSGA-Ⅱ)建立锅炉燃烧系统多目标优化模型.基于BP神经网络分别建立NOx排放和锅炉热效率模型;以降低NOx排放质量浓度和提高锅炉热效率为目标,基于BP-INSGA-Ⅱ算法对锅炉燃烧系统进行多目标寻优;基于BP-INSGA-Ⅱ算法、BP-NSGA-Ⅱ算法、GRNN-INSGA-Ⅱ算法和GRNN-NSGA-Ⅱ算法分别建立锅炉燃烧优化模型,比较各优化模型的性能,验证锅炉燃烧优化模型的有效性.结果表明:NOx排放质量浓度预测模型和锅炉热效率预测模型最大误差均不超过3%;基于BP-INSGA-Ⅱ算法建立锅炉燃烧优化模型使NOx排放质量浓度平均降低15.42%,锅炉热效率平均提高0.105 8%.结合BP神经网络与改进的多目标优化方法建立的锅炉燃烧优化模型能够同时提高锅炉热效率和降低NOx排放.

BP神经网络、非支配排序遗传算法(NSGA-Ⅱ)、多目标优化、NOx排放、锅炉热效率

52

TK16(热力工程、热机)

江苏方天电力技术有限公司科技资助项目KJ201927

2022-10-25(万方平台首次上网日期,不代表论文的发表时间)

共10页

943-952

相关文献
评论
暂无封面信息
查看本期封面目录

东南大学学报(自然科学版)

1001-0505

32-1178/N

52

2022,52(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn