基于MED和自适应VMD的行星齿轮箱故障诊断方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1001-0505.2020.04.014

基于MED和自适应VMD的行星齿轮箱故障诊断方法

引用
为解决变分模态分解(VMD)在行星齿轮箱故障特征频率提取过程出现的鲁棒性低及分解个数不确定的问题,提出一种基于最小熵反褶积(MED)和自适应变分模态分解(AVMD)的齿轮箱故障诊断方法.首先通过MED对信号进行降噪,突出故障信号特征;采用瞬时频率的新定义及变差概念,自适应选择VMD的级数;使用VMD方法将行星齿轮箱的断齿故障信号分解为若干个本征模态函数(IMF)分量;根据相关系数分析选取带有故障信号的IMF分量,对其进行包络谱分析,以提取故障特征频率.仿真信号和试验信号分析结果表明,使用MED去噪后信号的峰值信噪比提高了10%,解决了传统VMD个数经验选择出现的误差问题,从而实现此过程自适应化,解决了VMD在强噪声下针对非线性非平稳信号鲁棒性低的问题,准确提取了风电齿轮箱的故障特征频率.

行星齿轮箱、最小熵反褶积、变分模态分解、故障诊断

50

TK83(风能、风力机械)

国家自然科学基金资助项目;中央高校基本科研业务费专项资金资助项目

2020-09-15(万方平台首次上网日期,不代表论文的发表时间)

共7页

698-704

相关文献
评论
暂无封面信息
查看本期封面目录

东南大学学报(自然科学版)

1001-0505

32-1178/N

50

2020,50(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn