工件表面微小缺陷的检测与识别方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1001-0505.2014.04.010

工件表面微小缺陷的检测与识别方法

引用
针对微小缺陷在复杂背景图像情形下分割难的问题,提出了一种基于像元搜索算法的微小缺陷检测方法。首先采用直方图均衡化提升背景与缺陷目标的对比度,在分析噪声分布特点的基础上,利用基于中值和均值滤波的改进滤波算法对图像进行去噪等前期预处理;然后根据背景灰度分布,在目标分割过程中采用分块、按方差大小排除背景图像块、初定目标和剔除伪目标的缺陷像元搜索算法;最后采用矩形度和区域占空比进行缺陷特征提取。结果表明,对于背景不均匀、目标与背景区分不明显这类复杂背景图像,所提出算法相对于传统的Otsu等算法能够更好地分割出弱小缺陷目标,提高了检测缺陷的准确性。

中值滤波、微小缺陷分割、缺陷检测、特征提取

TP391(计算技术、计算机技术)

国家自然科学基金资助项目51075070.

2014-08-09(万方平台首次上网日期,不代表论文的发表时间)

共5页

735-739

相关文献
评论
相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn