基于EEMD-Renyi熵和PCA-PNN的滚动轴承故障诊断
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1001-0505.2011.S1.023

基于EEMD-Renyi熵和PCA-PNN的滚动轴承故障诊断

引用
针对滚动轴承故障特征提取与状态监测问题,提出一种基于集合经验模式分解(EEMD)、Renyi熵、主元分析(PCA)和概率神经网络(PNN)的新方法.首先,将轴承振动信号通过EEMD分解成一组本征模态函数(IMF),计算每个IMF分量的Renyi熵值作为表征故障特征的向量,采用主元分析(PCA)对特征降维,提取主元输入概率神经网络进行故障分类.通过SKF6203轴承的正常、内圈点蚀、外圈点蚀和滚动体点蚀这4类状态的诊断实验验证了方法的有效性,诊断正确率为91.7%.

故障诊断、滚动轴承、集合经验模式分解、Renyi熵、主元分析、概率神经网络

41

TP206;TH17(自动化技术及设备)

江苏省自然科学基金资助项目BK2009356;江苏省高校自然科学研究资助项目09KJB510003

2012-02-21(万方平台首次上网日期,不代表论文的发表时间)

共5页

107-111

相关文献
评论
暂无封面信息
查看本期封面目录

东南大学学报(自然科学版)

1001-0505

32-1178/N

41

2011,41(z1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn