基于鲁棒输入训练神经网络的非线性多传感器故障诊断方法及其应用
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1001-0505.2011.03.028

基于鲁棒输入训练神经网络的非线性多传感器故障诊断方法及其应用

引用
针对非线性系统多传感器故障诊断时出现的检测准确性下降和数据重构产生的残差污染问题,提出了基于鲁棒输入训练神经网络非线性多传感器故障诊断模型.在目标函数中引入影响因子函数和可靠性系数,并通过计算机模拟和仿真确定最佳影响因子函数形式,抑制了多个含有显著误差故障数据的不良影响,并增加了具备高可靠性的重要数据影响权重,大大减小了残差污染,提高了故障诊断的准确性和可靠性.以某300 MW机组1#高加测点为对象进行算例分析,验证了该方法对于多传感器故障诊断的可行性和准确性,计算和模拟表明,RITNN方法优于线性PCA和传统ITNN方法,能够更加准确进行多传感器故障的检测和故障数据的重构.

鲁棒输入训练神经网络、故障诊断、多传感器、影响因子、可靠性系数

41

TP206.3(自动化技术及设备)

东南大学科技基金资助项目9203000024

2011-08-18(万方平台首次上网日期,不代表论文的发表时间)

共5页

574-578

相关文献
评论
暂无封面信息
查看本期封面目录

东南大学学报(自然科学版)

1001-0505

32-1178/N

41

2011,41(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn