基于主成分分析及匹配聚类分析的数据表语义压缩方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3321/j.issn:1001-0505.2006.06.011

基于主成分分析及匹配聚类分析的数据表语义压缩方法

引用
提出一种基于主成分分析及匹配聚类分析的数据表语义压缩方法PCA-Clustering.主成分分析利用属性间相关性,提取主成分以实现纵向压缩;匹配聚类通过对匹配程度的量度决定元组的隶属,用较少的簇集代表元组代替所有元组以实现横向压缩,并充分利用较小的允许误差取得更好的压缩比.仿真实验结果表明,在数据属性间线性相关关系明显的情况下,PCA-Clustering在压缩比方面平均优于Fascicles和ItCompress 10%~15%左右;与采用CaRT模型的SPARTAN相比,由于CaRT对于线性相关明显的数值型属性效果不够理想,PCA-Clustering仍然具有较好的压缩比.

语义压缩、主成分分析、匹配程度

36

TP311.13(计算技术、计算机技术)

国家自然科学基金90412014;东南大学校科研和教改项目XJ0409150

2007-01-22(万方平台首次上网日期,不代表论文的发表时间)

共4页

927-930

相关文献
评论
暂无封面信息
查看本期封面目录

东南大学学报(自然科学版)

1001-0505

32-1178/N

36

2006,36(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn