基于粗糙集和决策树的自适应神经网络短期负荷预测方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1006-6047.2009.10.006

基于粗糙集和决策树的自适应神经网络短期负荷预测方法

引用
利用数据挖掘中的聚类技术将历史负荷数据进行聚类,根据聚类后的分类信息对定性属性利用粗糙集进行属性约简,由约简结果进一步生成决策规则树供短期预测使用.根据聚类的结果对每类进行BP神经网络的训练,神经网络的隐含层单元采取逐步试用的方法根据训练误差最小化进行选择.在实际预测中,首先对待预测的记录利用决策规则树进行归类,然后选取相应类别的神经网络予以预测.通过实例证明,该方法的平均相对误差为2.16%,而同结构BP神经网络预测的平均相对误差为2.67%,ARMA预测的平均相对误差为3.81%,证明所提方法有效.

数据挖掘、负荷预测、短期、聚类、粗糙集、决策树、自适应神经网络

29

TM715(输配电工程、电力网及电力系统)

国家自然科学基金项目70671039,70572090;教育部新世纪优秀人才支持计划NCET-07-0281

2009-11-30(万方平台首次上网日期,不代表论文的发表时间)

共5页

30-34

相关文献
评论
暂无封面信息
查看本期封面目录

电力自动化设备

1006-6047

32-1318/TM

29

2009,29(10)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn