基于卷积神经网络的遥感影像地表覆盖分类
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1672-1586.2020.05.010

基于卷积神经网络的遥感影像地表覆盖分类

引用
遥感影像地表覆盖分类是地理国情监测和地理信息资源建设中至关重要的环节,利用卷积神经网络对遥感影像进行特征提取和分类,具有十分重要的科研和应用价值.为提高遥感影像的地表覆盖分类精度,在深度卷积神经网络VGGNet的基础上,采用SeLU函数作为激活函数,并将激活函数中的λ、α作为训练参数,得到改进的VGGNet,用逐层贪婪算法对网络参数初始化,并选择适当的学习次数利用迁移学习的方法对网络参数调整,以提高网络的泛化能力来提取遥感影像各类别的深层特征,从而有效进行地表覆盖分类.通过GF-1卫星影像的实验表明本文方法在地表覆盖分类精度方面的优越性.

卷积神经网络、地表覆盖分类、VGGNet、SeLU函数、迁移学习、网络训练

27

P237(摄影测量学与测绘遥感)

国家重点研发计划2016YFB0501800

2020-11-10(万方平台首次上网日期,不代表论文的发表时间)

共7页

58-64

相关文献
评论
暂无封面信息
查看本期封面目录

地理信息世界

1672-1586

11-4969/P

27

2020,27(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn