基于Gradient Boosting的车载LiDAR点云分类
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1672-1586.2016.03.011

基于Gradient Boosting的车载LiDAR点云分类

引用
车载LiDAR点云中包含地面、建筑物、行道树、路灯等丰富地物类别,自动对这些不同类别点云进行分类,对点云中目标的识别、提取及重建都具有重要意义。本文提出了一种基于Gradient Boosting的自动分类方法。该方法首先对车载激光点云进行数据预处理,然后计算点云的协方差矩阵、密度比、高程相关特征、局部平面特征、投影特征等,再计算点云特征直方图与垂直分布直方图,采用K-means方法对这两者分别进行聚类,并将其聚类类别值也作为特征,从而构建出20维的点云特征向量,应用Gradient Boosting分类方法进行自动分类。为了验证本文方法的有效性,从某城镇场景的车载激光点云数据中选取部分代表区域共144W点作为训练数据集,然后选取另一较大区域的点云共312W点作为测试数据集。使用训练好的分类器对测试数据集进行分类,分类结果总体准确率达到了93.38%,耗时631s,说明此分类方法具有较高的分类准确率,同时也具备较高的效率。

点云分类、特征向量、特征直方图、聚类、Gradient Boosting

23

P208(一般性问题)

资金项目国家自然科学基金项目41371431

2016-07-21(万方平台首次上网日期,不代表论文的发表时间)

共6页

47-52

相关文献
评论
暂无封面信息
查看本期封面目录

地理信息世界

1672-1586

11-4969/P

23

2016,23(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn