基于多维融合特征和卷积神经网络的多任务用户短期负荷预测
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.7500/AEPS20220427004

基于多维融合特征和卷积神经网络的多任务用户短期负荷预测

引用
针对海量用户负荷预测场景下,应用单任务用户负荷预测法所导致的运行效率低以及无法学习相关任务间关联关系等问题,提出一种基于多维融合特征和卷积神经网络的多任务用户短期负荷预测方法.首先,基于聚类技术实现多任务学习中相关任务的选择;其次,为每一类用户群构建多维融合输入,合理有序容纳多个任务的特征,避免维度爆炸和信息混乱;最后,分别为每一类用户建立以卷积神经网络为共享层的多任务预测模型,学习共享特征,并行输出相应类中全部用户的负荷预测值.基于爱尔兰能源监管委员会提供的智能电表实测数据进行算例分析,结果表明,该方法在提高整体运行效率和平均预测精度方面均取得良好成效.

海量用户、负荷预测、多任务学习、多维融合特征、卷积神经网络

47

TP391;TM714;TP181

2023-07-19(万方平台首次上网日期,不代表论文的发表时间)

共9页

69-77

相关文献
评论
暂无封面信息
查看本期封面目录

电力系统自动化

1000-1026

32-1180/TP

47

2023,47(13)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn