基于深度迁移学习的时变拓扑下电力系统状态估计
针对电力系统拓扑实时变化导致数据驱动状态估计器不可用的情况,提出一种基于深度迁移学习的数据驱动状态估计方法.将原拓扑海量历史数据训练得到的模型作为基础模型,当新拓扑实时量测数据更新时,加载和保存基础模型中特征提取层的权重和参数,只需要微调模型的全连接层,即可获得适应于新拓扑的神经网络,提高了数据驱动状态估计模型的自适应性和泛化性能.通过对IEEE标准系统和中国某实际省网的算例测试,并将其估计结果与加权最小二乘法和加权最小绝对值法进行比较.结果表明,在考虑拓扑时变性的情况下,该算法与上述2种物理算法相比具有更优的估计性能和估计效率.
状态估计;拓扑变化;机器学习;深度迁移学习
45
国家重点研发计划资助项目2018YFB0904500
2021-12-28(万方平台首次上网日期,不代表论文的发表时间)
共8页
49-56