基于深度迁移学习的时变拓扑下电力系统状态估计
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.7500/AEPS20210524003

基于深度迁移学习的时变拓扑下电力系统状态估计

引用
针对电力系统拓扑实时变化导致数据驱动状态估计器不可用的情况,提出一种基于深度迁移学习的数据驱动状态估计方法.将原拓扑海量历史数据训练得到的模型作为基础模型,当新拓扑实时量测数据更新时,加载和保存基础模型中特征提取层的权重和参数,只需要微调模型的全连接层,即可获得适应于新拓扑的神经网络,提高了数据驱动状态估计模型的自适应性和泛化性能.通过对IEEE标准系统和中国某实际省网的算例测试,并将其估计结果与加权最小二乘法和加权最小绝对值法进行比较.结果表明,在考虑拓扑时变性的情况下,该算法与上述2种物理算法相比具有更优的估计性能和估计效率.

状态估计;拓扑变化;机器学习;深度迁移学习

45

国家重点研发计划资助项目2018YFB0904500

2021-12-28(万方平台首次上网日期,不代表论文的发表时间)

共8页

49-56

相关文献
评论
暂无封面信息
查看本期封面目录

电力系统自动化

1000-1026

32-1180/TP

45

2021,45(24)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn