基于自动编码器的锂离子电池状态评估方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.7500/AEPS20210305007

基于自动编码器的锂离子电池状态评估方法

引用
准确的电池状态估计对于确保电池储能系统的安全可靠运行至关重要.电池的健康状态(SOH)虽然能反映电池的老化状态,但SOH估计模型的建立受到实际标签数据难以获得或是测试代价高昂的限制.文中基于无监督机器学习模型,建立了一种新的健康指标对电池进行状态评估.首先,从电池的电压-放电容量曲线选择特征,根据锂离子电池的老化机制将电池状态划分为健康和异常,使用健康的数据对基于卷积神经网络的自动编码器模型进行训练,根据自动编码器的输入、输出计算重构误差,最后将重构误差输入逻辑回归模型对电池状态进行判别.在开源的MIT-Stanford数据集上进行实验,验证了所提方法的有效性.

锂离子电池;状态评估;深度学习;卷积神经网络;自动编码器

45

国家自然科学基金委员会-国家电网公司智能电网联合基金资助项目U196620053

2021-12-28(万方平台首次上网日期,不代表论文的发表时间)

共8页

41-48

相关文献
评论
暂无封面信息
查看本期封面目录

电力系统自动化

1000-1026

32-1180/TP

45

2021,45(24)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn