基于特征提取的面向边缘数据中心的窃电监测
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.7500/AEPS20190624003

基于特征提取的面向边缘数据中心的窃电监测

引用
随着电网信息物理系统的发展,一部分数据处理功能逐渐下沉到靠近终端用户的边缘层.为了给后续分析提供可靠的数据源,及时发现异常用电行为,窃电监测是边缘数据中心重要功能之一.文中提出一种针对边缘数据中心的窃电监测方法,该方法利用深度卷积生成对抗网络(DCGAN)鉴别器提取得到的特征,在边缘数据中心对二范数线性支持向量机(L2SVM)进行训练.实验结果证实,DCGAN具有较好的收敛性能,鉴别器提取得到的正常与窃电行为用电特征具有明显划分,且比基于主成分分析(PCA)特征提取方法更加有效,此外,与基于径向基核函数的支持向量机(SVM)反窃电方法相比,所提方法准确度更好且计算复杂度低,适合边缘数据中心部署.

信息物理系统、边缘数据中心、深度卷积生成对抗网络(DCGAN)、特征提取、二范数线性支持向量机(L2SVM)

44

国家自然科学基金委员会-国家电网公司智能电网联合基金资助项目U1866206

2020-05-21(万方平台首次上网日期,不代表论文的发表时间)

共7页

128-134

相关文献
评论
暂无封面信息
查看本期封面目录

电力系统自动化

1000-1026

32-1180/TP

44

2020,44(9)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn