采用GA-BPNN与TLS模型的风电机组异常辨识方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.7500/AEPS20190203002

采用GA-BPNN与TLS模型的风电机组异常辨识方法

引用
基于反向传播神经网络(BPNN)建立了风电机组状态参数预测模型,并采用遗传算法(GA)对BPNN模型的初始权重与阈值进行优化,有效消除环境因素对风电机组状态参数的影响;采用TLS(t-location scale)分布模型刻画不同风速区间下预测残差的分布特性,基于矩估计方法实现TLS分布参数估计,并在此基础上提出了计及风速影响的状态残差异常程度量化指标.以某风电场的1.5 MW双馈风电机组为例进行了异常分析,结果验证了模型的有效性和准确性.

风电机组、数据采集与监控系统、预测模型、TLS分布模型、异常辨识

44

国家重点研发计划资助项目;国家自然科学基金资助项目;国家电网公司科技项目

2020-05-21(万方平台首次上网日期,不代表论文的发表时间)

共8页

95-102

相关文献
评论
暂无封面信息
查看本期封面目录

电力系统自动化

1000-1026

32-1180/TP

44

2020,44(9)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn