基于深度学习和蒙特卡洛树搜索的机组恢复在线决策
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.7500/AEPS20170930011

基于深度学习和蒙特卡洛树搜索的机组恢复在线决策

引用
针对大停电后电力系统初始状态和恢复过程中线路恢复状况的不确定性,提出一种基于深度学习和蒙特卡洛树搜索(MCTS)的机组恢复在线决策方法.采用一种深度学习算法——稀疏自动编码器(SAE)对自动生成的训练集进行训练,建立估值网络;根据系统状态,利用改进的上限置信区间(UCT)算法、支路修剪技术和估值网络对机组恢复措施进行MCTS;汇总并行的多次MCTS结果,以加权机组发电量为决策指标确定最终的恢复措施.以新英格兰10机39节点系统和山东西部电网为例验证了所提方法的可行性和有效性;相比于传统方法,所提方法能够获得具有较高鲁棒性的恢复方案,并有效应对机组恢复过程中的多种不确定性状况.

电力系统恢复、机组恢复、深度学习、蒙特卡洛树搜索、在线决策

42

国家重点研发计划资助项目2017YFB0902600

2018-08-24(万方平台首次上网日期,不代表论文的发表时间)

共8页

40-47

相关文献
评论
暂无封面信息
查看本期封面目录

电力系统自动化

1000-1026

32-1180/TP

42

2018,42(14)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn