基于混合算法的短期负荷预测模糊建模
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3321/j.issn:1000-1026.2006.02.006

基于混合算法的短期负荷预测模糊建模

引用
结合最小二乘(LS)辨识以及一种基于进化规划(EP)和粒子群优化(PSO)的混合进化算法EPPSO,针对对温度比较敏感的夏季负荷,提出一种3阶段短期负荷预测(STLF)算法.在第1阶段,应用LS设计模糊基函数网络(FBFN)完成STLF模糊空间划分;第2阶段,首先拓展FBFN成一阶Sugeno模糊模型,然后应用EPPSO调节其前件参数同时训练后件参数,最后将前述模型用于STLF得出的预测误差看做一个新的时间序列,并仅用气象因素对其进行辨识,可以用回归模型表示该辨识模型,进而应用LS进行辨识.文中提出的STLF模糊建模策略主要贡献于受气象因素影响较大的夏季负荷.仿真部分对浙江省电力公司的实际负荷进行了预测,与其他方法的比较结果证明该方法具有良好的预测性能.

模糊基函数网络、短期负荷预测、进化模糊系统

30

TM715;TP18(输配电工程、电力网及电力系统)

国家重点基础研究发展计划973计划60225006;中国科学院资助项目60421002

2006-03-09(万方平台首次上网日期,不代表论文的发表时间)

共10页

32-40,95

相关文献
评论
暂无封面信息
查看本期封面目录

电力系统自动化

1000-1026

32-1180/TP

30

2006,30(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn