一种基于差分隐私的电力客户数据隐私保护聚类方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1009-1831.2023.02.016

一种基于差分隐私的电力客户数据隐私保护聚类方法

引用
聚类在电网客户大数据分析中发挥着重要作用,随着我国《数据安全法》的颁布,如何在电力客户数据聚类中兼顾数据隐私和聚类质量,成为亟待解决的难点.针对已有的基于差分隐私的k-means聚类方法难以兼顾数据隐私与聚类质量问题,提出距离加噪扰动方法,通过提取数据距离并向距离数值添加满足差分约束的噪声,构建加噪矩阵,实现数据距离隐私保护;设计基于加噪矩阵的kq-means聚类方法,引入k最近邻概念,设计聚簇划分策略,将数据记录分配到距其最近的若干个中心点的期望区间,减小多轮迭代过程中差分噪声累积产生的聚类误差,从而支撑保护客户数据隐私的电网客户数据聚类.

电力客户数据、隐私保护、加噪矩阵、k最近邻、差分隐私

25

TM73;TP311(输配电工程、电力网及电力系统)

国家电网有限公司总部科技项目5700-202018268A-0-0-00

2023-03-24(万方平台首次上网日期,不代表论文的发表时间)

共6页

101-106

相关文献
评论
暂无封面信息
查看本期封面目录

电力需求侧管理

1009-1831

32-1592/TK

25

2023,25(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn