基于支持向量机的城市快速路交通拥堵识别方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13986/j.cnki.jote.2018.01.009

基于支持向量机的城市快速路交通拥堵识别方法

引用
首先提出一种基于交通流量-交通密度的二维空间下的交通状态分类方法,在此基础上,构建对拥堵状态和非拥堵状态识别的支持向量机分类器;其次,设计基于支持向量机的城市快速路交通拥堵识别方法的步骤;最后,以西安市南二环快速路采集的交通参数数据为例,对比验证了在不同支持向量机(SVM)分离器下本文提出的城市快速路交通拥堵识别方法的有效性.研究表明:SVM线性核函数分类器的识别正确率(识别正确率均值为91.65%)高于多项式核函数等其他核函数分类器,说明交通拥堵识别的具有良好的线性可分性;不同核函数分类器的识别正确率均高于90%,说明本文设计城市快速路交通拥堵识别方法具有良好的识别性能.

城市交通、交通状态、模式识别、支持向量机(SVM)

18

U491.31(交通工程与公路运输技术管理)

陕西省自然科学基础研究计划面上项目;陕西省交通科技项目;陕西省交通科技项目;江苏高校品牌专业建设工程资助项目

2018-06-19(万方平台首次上网日期,不代表论文的发表时间)

共5页

43-47

相关文献
评论
暂无封面信息
查看本期封面目录

道路交通与安全

1008-2522

11-3911/U

18

2018,18(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn