基于正则化贪心森林的多维频率指标智能化预测方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.12204/j.issn.1000-7229.2020.09.014

基于正则化贪心森林的多维频率指标智能化预测方法

引用
为实现海量预想故障下电力系统频率响应性能的快速和精确感知,文章提出了一种基于正则化贪心森林(regularized greedy forests,RGF)的多维频率指标智能化预测方法.该方法采用RGF建立特征输入与多维频率指标之间的非线性映射关系,通过对全局参数进行优化,并引入3种正则化机制,使所构建的机器学习模型能够有效表征复杂函数,防止过拟合.为保证预测算法的性能,通过网格搜索遍历参数组合,以确定所构建RGF模型的最佳参数.在改进的IEEE RTS-79系统上开展了算例测试,与时域仿真、随机森林和梯度提升方法所得结果进行比较,验证了所提方法的准确性、快速性以及良好的泛化能力.

频率、惯性、智能化预测、正则化贪心森林、网格搜索法

41

TM71(输配电工程、电力网及电力系统)

国家自然科学基金资助项目;湖南省自然科学优秀青 年 基 金 项 目;国 家 电 网 公 司 科 技 项 目

2020-09-08(万方平台首次上网日期,不代表论文的发表时间)

共8页

124-131

相关文献
评论
暂无封面信息
查看本期封面目录

电力建设

1000-7229

11-2583/TM

41

2020,41(9)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn