基于双变量经验模态分解和最小二乘支持向量机的风电功率区间预测
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1000-7229.2019.05.014

基于双变量经验模态分解和最小二乘支持向量机的风电功率区间预测

引用
准确的功率预测是应对大规模风电并网问题的重要方法,但目前风电功率预测精度仍存在较大误差.为了更精确地对风电功率进行超短期预测,提出一种基于双变量经验模态分解技术和最小二乘支持向量机的组合区间预测方法.首先,通过比例系数法构造复值区间,解决了区间构造的难题;其次,利用双变量经验模态分解和样本熵分别将上、下限结果分解重构,凸显了数据的特征信息;再次,针对各特征分量分别建立基于深度信念网络和最小二乘支持向量机的组合预测模型进行预测;最后,将各分量的预测结果组合得到一定置信率下的预测区间.实际算例表明,与现有的区间预测方法比,所提区间预测方法有效提高了区间覆盖率,达到了更准确的预测精度.

风电功率、区间预测、功率预测、经验模态分解

40

TM76(输配电工程、电力网及电力系统)

国家重点研发计划项目2016YFB0900104

2019-07-05(万方平台首次上网日期,不代表论文的发表时间)

共10页

118-127

相关文献
评论
暂无封面信息
查看本期封面目录

电力建设

1000-7229

11-2583/TM

40

2019,40(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn