基于自组织中心K-means 算法的用户互动用电行为聚类分析
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1000-7229.2019.01.009

基于自组织中心K-means 算法的用户互动用电行为聚类分析

引用
电力用户参与电网侧互动用电和辅助服务已成为国内外关注热点,用户互动用电行为分析是其中一项核心工作.结合自组织映射SOM神经网络和K-means聚类算法,采用一种自组织中心K-means算法用于用户互动用电行为聚类分析,能够实现更加精准识别和快速聚类.首先,对自组织中心K-means算法原理进行分析,说明其与传统聚类算法相比在用电行为聚类分析中的优势;然后,构建峰谷分时电价背景下,基于用户心理学的调节潜力指标,并分析基于负荷数据和调节潜力指标的用户互动用电行为;最后,以某电力公司管辖区域用户的日常负荷数据为研究对象,将基于自组织中心K-means算法的聚类结果与其他传统聚类方法进行对比,证明基于调节潜力指标的自组织中心K-means算法在用户互动用电行为上的精准识别和准确聚类优势.

用户互动、自组织中心K-means算法、负荷数据、调节潜力指标、聚类分析

40

TM714(输配电工程、电力网及电力系统)

国家重点研发计划资助项目2018YFB0905000;青岛市海洋工程装备与技术智库联合项目201707071003

2019-05-31(万方平台首次上网日期,不代表论文的发表时间)

共9页

68-76

相关文献
评论
暂无封面信息
查看本期封面目录

电力建设

1000-7229

11-2583/TM

40

2019,40(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn