一种基于GAN的多船轨迹预测方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.16411/j.cnki.issn1006-7736.2023.03.006

一种基于GAN的多船轨迹预测方法

引用
为更好地预测船舶密集水域多船会遇避碰场景中的船舶轨迹,基于生成式对抗网络思想,提出一种多船轨迹预测模型——Vessel-GAN.针对船舶轨迹特点,Vessel-GAN模型基于时序卷积网络的多船历史轨迹编解码、船舶交互特征提取、终点信息引导和避碰损失函数等技术,通过在历史轨迹上的对抗训练,实现了能够拟合船舶航行行为数据分布的多船预测轨迹生成.基于琼州海峡近5000万条由AIS数据构建的船舶交互数据集的实验表明,相较Social-GAN基准模型,Vessel-GAN在计算速度方面提升了36%,平均位移精度、终点位移精度分别提升28%、41%,生成的多船预测轨迹更加符合船舶真实行为特征,且具有更好的预测实时性和稳定性.

多船轨迹预测、生成式对抗网络(GAN)、船舶会遇避碰、船舶自动识别系统(AIS)

49

U675.7

广西壮族自治区科技厅重点研发项目2021AB07045

2023-10-20(万方平台首次上网日期,不代表论文的发表时间)

共10页

51-60

相关文献
评论
暂无封面信息
查看本期封面目录

大连海事大学学报

1006-7736

21-1360/U

49

2023,49(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn