基于SFA的改进MFCC特征提取算法
慢特征分析(SFA)算法是一种基于慢度原则、无人监管的高效算法,其核心思想是从复杂多变的混合信号中提取出其中所隐含的缓慢变化成分.声呐接收到的信号,通常都是用Mel频率倒谱系数算法做特征提取,而对于声呐浮标等需要使用无线通信方式传输目标信号的情况,由于信号在传播过程中受信道影响而产生一定的误码率,使得传统的MFCC方法的特征提取性能下降.在传统MFCC的基础上,提出了一种新的算法——基于SFA的改进MFCC特征提取算法.实验数据分析证明,基于SFA的改进MFCC特征性能较传统的基于离散余弦变换(DCT)的MFCC特征性能有明显的提高,从而证实了所提算法的有效性和实用性.
特征提取、慢特征分析(SFA)、目标识别
39
TN929.3
2015-06-17(万方平台首次上网日期,不代表论文的发表时间)
共5页
66-70