基于IAFS算法融合小波神经网络的变压器故障诊断研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

基于IAFS算法融合小波神经网络的变压器故障诊断研究

引用
鉴于小波神经网络训练模型在电力变压器故障诊断中存在易陷入局部最优与对初始值高难度、高要求性问题,通过将人工鱼群算法和小波神经网络技术有机地融入到变压器故障诊断中,开发出一种全新、高效的方法.采用人工鱼群算法改善小波神经网络训练模型的权重和阈值,以达到最佳的模型性能,提升模型的准确性和可靠性.在整个学习过程中,小波神经网络训练模型的复杂度和泛化能力都得到了较大的提升,同时加快了收敛速度,从全局搜索逐步转向精细搜索,避免算法出现局部最优的情况.最后,通过仿真实验结果证明所提方法可有效地提升变压器故障诊断的准确度,提高了变压器故障诊断效率.

小波神经网络、改进人工鱼群算法、变压器故障、优化模拟

43

TP301.6;TP18;O657.3

2024-02-03(万方平台首次上网日期,不代表论文的发表时间)

共7页

60-66

相关文献
评论
暂无封面信息
查看本期封面目录

电气应用

1672-9560

11-5249/TM

43

2024,43(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn