基于改进YOLOv5算法的鸟巢检测方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.19768/j.cnki.dgjs.2023.18.007

基于改进YOLOv5算法的鸟巢检测方法

引用
深度学习技术的快速发展推动了电力智能安防的自动化进程.电力场景中用于高压电力塔和接触网搭建的复杂钢结构往往成为铁路沿线鸟类筑巢之所,给电力系统安全运行带来了隐患.因此,使用深度学习技术及时发现并清理鸟巢具有重要的实际意义.提出了一种基于改进 YOLOv5 的鸟巢检测方法,该方法在 YOLOv5 的基础上考虑了鸟巢本身所独有的黑色属性和错综复杂的纹理特性,采用注意力机制强化鸟巢检测过程中对上述特征的学习.同时,根据电力场景中采集的实际鸟巢数据对该方法开展的验证性实验取得了良好的检测效果,算法检测性能达到 88.6%,相比其他经典检测算法高 1.5%以上.

YOLOv5、鸟巢检测、电力智能安防、深度学习、目标检测

TM754(输配电工程、电力网及电力系统)

2023-11-15(万方平台首次上网日期,不代表论文的发表时间)

共4页

22-25

相关文献
评论
暂无封面信息
查看本期封面目录

电工技术

1002-1388

50-1072/TM

2023,(18)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn