基于误差聚类及时空性风电预测研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.19768/j.cnki.dgjs.2023.07.023

基于误差聚类及时空性风电预测研究

引用
为了提高风电功率的预测精度,针对风电数据间歇性与时空性的特点,以风力发电的历史数据为基础,首先对风速功率散点图的离散型异常数据采用四分位法进行识别和剔除,对弃风造成的堆积型异常数据采用 K-means聚类算法进行处理;然后从时间、空间、时空对风电场自身及风电场之间的功率变化进行统计分析,引入相关系数、输出功率标准差、空间持续误差等指标,得到集群风电场功率变化规律及相关性;最后采用 BP 神经网络通过对数据进行多次的训练提高风电功率预测精度.

风电功率异常数据、K-means聚类、时空相关性、空间持续误差、BP神经网络

TM614(发电、发电厂)

2023-06-09(万方平台首次上网日期,不代表论文的发表时间)

共5页

88-91,96

相关文献
评论
暂无封面信息
查看本期封面目录

电工技术

1002-1388

50-1072/TM

2023,(7)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn