基于PSO-XGBoost算法的多衰退特征锂离子电池SOH估计
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.16786/j.cnki.1671-8887.eem.2023.01.006

基于PSO-XGBoost算法的多衰退特征锂离子电池SOH估计

引用
为了准确估计锂离子电池的健康状态(SOH),提出了一种基于粒子群算法与极限梯度提升算法相结合的方法.首先利用主成分分析法(PCA)对电池数据进行预处理,提取并组成最佳健康因子数据组;在此数据的基础上,运用XGBoost算法建立锂离子电池退化过程模型,利用同类已有电池历史数据进行训练,通过粒子群算法优化XGBoost算法中五个主要参数,构建基于PSO-XGBoost的SOH预测模型;最后采用美国国家航空航天局电池数据集进行分析验证,并与现有的预测方法对比.结果表明,该方法平均绝对误差为0.003922、均方根误差为0.005553、最大误差为0.02184,具有较高的预测精度.

锂离子电池、健康状态、XGBoost、粒子群算法

TM912

2023-02-27(万方平台首次上网日期,不代表论文的发表时间)

共5页

23-27

相关文献
评论
暂无封面信息
查看本期封面目录

电工材料

1671-8887

45-1288/TG

2023,(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn