基于改进YOLOv4模型的无人机巡检图像杆塔缺陷检测方法研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.19753/j.issn1001-1390.2023.10.025

基于改进YOLOv4模型的无人机巡检图像杆塔缺陷检测方法研究

引用
针对现有输电线路无人机巡检图像缺陷检测方法存在的精度低、耗时长等问题,为了实现输电线路杆塔鸟巢的快速和准确识别,基于无人机巡检图像采集与处理系统,提出了一种改进的YOLO4模型用于输电线路杆塔图像的鸟巢检测.采用轻型MobileNetV2网络替换CSPDarkNet53网络,提高特征提取速度,在SPP模块中采用平均池化替换最大池化,提高算法对小目标的检测精度,引入注意力机制CBAM增强特征表达.通过试验验证了所提方法的可行性和优越性.结果表明,所提方法与常规检测方法相比,在输电线路杆塔图像缺陷检测中具有更优的检测精度和速度,检测精度达到94.40%,检测速度为60 FPS.所提研究为输电线杆塔缺陷检测方法的发展提供了一定的参考.

输电线路、杆塔鸟窝、无人机巡检、YOLOv4模型、注意力机制CBAM、MobileNetV2网络

60

TM77(输配电工程、电力网及电力系统)

国家电网有限公司总部科技项目SGTYHT/21-JS-225

2023-10-25(万方平台首次上网日期,不代表论文的发表时间)

共6页

155-160

相关文献
评论
暂无封面信息
查看本期封面目录

电测与仪表

1001-1390

23-1202/TH

60

2023,60(10)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn