一种应用于人体活动识别的迁移学习算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.12068/j.issn.1005-3026.2022.06.003

一种应用于人体活动识别的迁移学习算法

引用
通过采集可穿戴运动传感器信号,并利用迁移学习克服数据分布不一致来识别人体日常行为成为当下主流.利用可穿戴传感器采集信号,会产生影响迁移效果的噪声样本,传统的算法缺少对这部分样本的处理.针对这一问题,在传统算法的基础上进行改进,引入了基于马氏距离的样本筛选算法,提出了可用于人体活动识别的迁移学习算法T-WMD,并在两个公开的人体活动识别数据集上与其他5种算法进行对比实验.结果表明提出的算法可以有效地提升迁移学习效果.

生理信号、人体活动识别、迁移学习、体域网、机器学习

43

TP181(自动化基础理论)

国家重点研发计划;中央高校基本科研业务费专项资金资助项目

2022-07-14(万方平台首次上网日期,不代表论文的发表时间)

共7页

776-782

相关文献
评论
暂无封面信息
查看本期封面目录

东北大学学报(自然科学版)

1005-3026

21-1344/T

43

2022,43(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn