基于实例迁移的磨煤机过程监测建模
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.12068/j.issn.1005-3026.2021.10.001

基于实例迁移的磨煤机过程监测建模

引用
当工业生产过程数据匮乏时,很难利用基于数据统计的方法建立其过程监测模型,这给过程监测的准确性和及时性带来很大影响,迁移学习为解决上述问题提供了有效的途径.针对目标域磨煤机过程数据较少的情况,在源域磨煤机数据的基础上,建立基于实例迁移高斯混合模型(Gaussian mixture model,GMM)的目标域磨煤机过程监测模型.利用实例迁移对源域生产过程和目标域过程数据进行权重分配,通过改进的高斯混合模型算法得到最佳高斯组分数目和对应的模型参数,应用过程监测的全局概率指标实现磨煤机过程的跨域监测.磨煤机过程的研究结果验证了所提出方法的可行性和有效性.

过程监测;高斯混合模型;实例迁移;权重分配;全局概率指标

42

TP181;TP277;TM621.7(自动化基础理论)

国家自然科学基金资助项目61873053

2021-10-22(万方平台首次上网日期,不代表论文的发表时间)

共7页

1369-1375

相关文献
评论
暂无封面信息
查看本期封面目录

东北大学学报(自然科学版)

1005-3026

21-1344/T

42

2021,42(10)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn