基于VMD-DBN的滚动轴承故障诊断方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.12068/j.issn.1005-3026.2021.08.007

基于VMD-DBN的滚动轴承故障诊断方法

引用
为揭示滚动轴承故障振动信号的典型特征规律,结合变分模态分解(VMD)与深度置信网络(DBN)的优势,提出轴承振动信号特征的提取方法.将信号先进行基于VMD的分解,根据各模态分量频谱图确定其模态参数,得到若干个模态分量.然后,基于DBN强大的特征提取能力,采用DBN无监督特征提取方法,将得到的模态分量映射到一维,并融合各分量的DBN特征形成特征向量,将其作为粒子群优化支持向量机(PSO-SVM)的输入进行故障诊断.实验验证与对比分析证明了VMD-DBN方法的可行性与优越性.

滚动轴承;变分模态分解;深度置信网络;特征提取;故障诊断

42

TH165.3

中央高校基本科研业务费专项资金资助项目N180304018

2021-08-20(万方平台首次上网日期,不代表论文的发表时间)

共6页

1105-1110

相关文献
评论
暂无封面信息
查看本期封面目录

东北大学学报(自然科学版)

1005-3026

21-1344/T

42

2021,42(8)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn