基于强化学习的三维游戏控制算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.12068/j.issn.1005-3026.2021.04.004

基于强化学习的三维游戏控制算法

引用
基于强化学习,设计了一个面向三维第一人称射击游戏(DOOM)的智能体,该智能体可在游戏环境下移动、射击敌人、收集物品等.本文算法结合深度学习的目标识别算法Faster RCNN与Deep Q-Networks(DQN)算法,可将DQN算法的搜索空间大大减小,从而极大提升本文算法的训练效率.在虚拟游戏平台(ViZDoom)的两个场景下(Defend the center和Health gathering)进行实验,将本文算法与最新的三维射击游戏智能体算法进行比较,结果表明本文算法可以用更少的迭代次数实现更优的训练结果.

强化学习、深度学习、目标识别、Faster RCNN、DQN

42

TP391.41(计算技术、计算机技术)

国家重点研发计划项目;国家自然科学基金资助项目;中央高校基本科研业务费专项资金资助项目

2021-04-23(万方平台首次上网日期,不代表论文的发表时间)

共6页

478-482,493

相关文献
评论
暂无封面信息
查看本期封面目录

东北大学学报(自然科学版)

1005-3026

21-1344/T

42

2021,42(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn