基于mRMR-ESN的单变量光伏功率预测
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.12068/j.issn.1005-3026.2021.02.004

基于mRMR-ESN的单变量光伏功率预测

引用
设计了两种预测模型:利用天气变量作为输入的传统多变量预测模型;利用历史功率数据作为输入的新型单变量预测模型.采用最小冗余最大相关(min-redundancy and max-relevance,mRMR)方法分别对两种模型进行特征提取,并选用在时间序列预测方面具有优势的回声状态网络(echo state network,ESN)对未来5 min的光伏功率进行仿真预测.仿真结果表明,采用mRMR方法对历史光伏功率数据进行特征提取,确定能够使预测模型达到最优效果的特征子集,并将其作为单变量预测模型的输入,可以得到更准确的预测效果.所构建的新型单变量预测模型能够为光伏电站提供新的光伏预测思路.

回声状态网络、特征提取、特征子集、单变量输入、光伏功率预测

42

TP183;TM615(自动化基础理论)

国家自然科学基金资助项目;河北省自然科学基金资助项目;中央高校基本科研业务费专项资金资助项目

2021-03-04(万方平台首次上网日期,不代表论文的发表时间)

共6页

174-179

相关文献
评论
暂无封面信息
查看本期封面目录

东北大学学报(自然科学版)

1005-3026

21-1344/T

42

2021,42(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn