改进的神经网络在连铸板坯缺陷预报中的应用
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3321/j.issn:1005-3026.2008.09.022

改进的神经网络在连铸板坯缺陷预报中的应用

引用
在传统BP神经网络算法的基础上提出了一些改进措施,如采用了变步长的学习方法、加入了动量项,以防止网络振荡,达到了加速网络收敛的效果.本研究分析了表面纵裂成因及影响因素,以梅钢生产的焊瓶钢HP295为例构建表面纵裂预报系统,利用改进的BP网络预报表面纵裂,通过系统的分析发现焊瓶钢HP295表面纵裂产生的原因主要是二冷水分配不均匀.因此实际生产中,通过调节二冷水比例减少表面纵裂的产生.

表面纵裂、预报、BP神经网络、数据采集、改进措施

29

TF777.1(炼钢)

国家自然科学基金资助项目50774018;国家高技术研究发展计划项目2007AA03Z556

2008-11-26(万方平台首次上网日期,不代表论文的发表时间)

共4页

1306-1309

相关文献
评论
暂无封面信息
查看本期封面目录

东北大学学报(自然科学版)

1005-3026

21-1344/T

29

2008,29(9)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn